
django-audit-log Documentation
Release 0.3.0.beta

Vasil Vangelovski (Atomidata)

January 23, 2015

Contents

1 Installation 3

2 Tracking changes on a model 5
2.1 Tracking who created a model instance . 5
2.2 Tracking who made changes to a model . 5
2.3 Tracking full model history . 6
2.4 Querying the audit log . 6

3 Indices and tables 9

i

ii

django-audit-log Documentation, Release 0.3.0.beta

Adds support for tracking who changed what models through your Django application.

• Tracking creators and modifiers of your model instances.

• Tracking full model history.

Contents:

Contents 1

django-audit-log Documentation, Release 0.3.0.beta

2 Contents

CHAPTER 1

Installation

Install from PyPI with easy_install or pip:

pip install django-audit-log

to hack on the code you can symlink the package in your site-packages from the source tree:

python setup.py develop

The package audit_log doesn’t need to be in your INSTALLED_APPS. The only thing you need to
modify in your settings.py is add audit_log.middleware.UserLoggingMiddleware to the
MIDDLEWARE_CLASSES tupple:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’audit_log.middleware.UserLoggingMiddleware’,

)

3

django-audit-log Documentation, Release 0.3.0.beta

4 Chapter 1. Installation

CHAPTER 2

Tracking changes on a model

2.1 Tracking who created a model instance

You can track user information when model instances get created. For example:

from audit_log.models.fields import CreatingUserField, CreatingSessionKeyField

class ProductCategory(models.Model):
created_by = CreatingUserField()
created_session_key = CreatingSessionKeyField()
name = models.CharField(max_length=15)

This is useful for tracking owners of model objects within your app.

2.2 Tracking who made changes to a model

Two model fields are provided that in conjunction with the audit_log.middleware.UserLoggingMiddleware
can automatically track who made the last changes to a model instance. For example:

from django.db import models
from audit_log.models.fields import LastUserField, LastSessionKeyField

class Product(models.Model):
name = models.CharField(max_length = 150)
description = models.TextField()
price = models.DecimalField(max_digits = 10, decimal_places = 2)
category = models.ForeignKey(ProductCategory)

def __unicode__(self):
return self.name

class ProductRating(models.Model):
user = LastUserField()
session = LastSessionKeyField()
product = models.ForeignKey(Product)
rating = models.PositiveIntegerField()

Anytime someone makes changes to the ProductRating model through the web interface the reference to the user
that made the change will be stored in the user field and the session key will be stored in the session field.

5

django-audit-log Documentation, Release 0.3.0.beta

2.3 Tracking full model history

In order to enable change tracking on a model, the model needs to have a property of type
audit_log.models.managers.AuditLog attached:

from django.db import models
from audit_log.models.fields import LastUserField
from audit_log.models.managers import AuditLog

class ProductCategory(models.Model):
name = models.CharField(max_length=150, primary_key = True)
description = models.TextField()

audit_log = AuditLog()

class Product(models.Model):
name = models.CharField(max_length = 150)
description = models.TextField()
price = models.DecimalField(max_digits = 10, decimal_places = 2)
category = models.ForeignKey(ProductCategory)

audit_log = AuditLog()

Each time you add an instance of AuditLog to any of your models you need to run python manage.py syncdb
so that the database table that keeps the actual audit log for the given model gets created.

2.4 Querying the audit log

An instance of audit_log.models.managers.AuditLog will behave much like a standard manager in your
model. Assuming the above model configuration you can go ahead and create/edit/delete instances of Product, to
query all the changes that were made to the products table you would need to retrieve all the entries for the audit log
for that particular model class:

In [2]: Product.audit_log.all()
Out[2]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,

<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
<ProductAuditLogEntry: Product: My Gadget super changed at 2011-02-25 06:04:15.448934>,
<ProductAuditLogEntry: Product: My Gadget changed at 2011-02-25 06:04:06.566589>,
<ProductAuditLogEntry: Product: My Gadget created at 2011-02-25 06:03:57.751222>,
<ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Accordingly you can get the changes made to a particular model instance like so:

In [4]: Product.objects.all()[0].audit_log.all()
Out[4]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,

<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
<ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Instances of AuditLog behave like django model managers and can be queried in the same fashion.

The querysets yielded by AuditLog managers are querysets for models of type [X]AuditLogEntry, where X is
the tracked model class. An instance of XAuditLogEntry represents a log entry for a particular model instance and
will have the following fields that are of relevance:

• action_id - Primary key for the log entry.

6 Chapter 2. Tracking changes on a model

django-audit-log Documentation, Release 0.3.0.beta

• action_date - The point in time when the logged action was performed.

• action_user - The user that performed the logged action.

• action_type - The type of the action (Created/Changed/Deleted)

• Any field of the original X model that is tracked by the audit log.

2.4. Querying the audit log 7

django-audit-log Documentation, Release 0.3.0.beta

8 Chapter 2. Tracking changes on a model

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

	Installation
	Tracking changes on a model
	Tracking who created a model instance
	Tracking who made changes to a model
	Tracking full model history
	Querying the audit log

	Indices and tables

