

Welcome to django-audit-log’s documentation!

Adds support for tracking who changed what models through your Django application.

	Tracking creators and modifiers of your model instances.

	Tracking full model history.

Contents:

	Installation

	Tracking Users that Created/Modified a Model
	Tracking Who Created a Model

	Tracking Who Made the Last Changes to a Model

	Tracking full model history
	Querying the audit log

	M2M Relations

	Abstract Base Models

	Disabling/Enabling Tracking on a Model Instance

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install from PyPI with easy_install or pip:

pip install django-audit-log

to hack on the code you can symlink the package in your site-packages from the source tree:

python setup.py develop

The package audit_log doesn’t need to be in your INSTALLED_APPS. The only thing you need
to modify in your settings.py is add audit_log.middleware.UserLoggingMiddleware to
the MIDDLEWARE_CLASSES tupple:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'audit_log.middleware.JWTAuthMiddleware',
 'audit_log.middleware.UserLoggingMiddleware',
)

For users of django-rest-framework-jwt you should also include a special middleware
that fixes a compatibility problem with that library:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'audit_log.middleware.JWTAuthMiddleware',
 'audit_log.middleware.UserLoggingMiddleware',
)

Note that in that case rest_framework_jwt.authentication.JSONWebTokenAuthentication
should be at the top of DEFAULT_AUTHENTICATION_CLASSES.

Tracking Users that Created/Modified a Model

AuthStampedModel is an abstract model base class in the vein of TimeStampedModel from django-extensions.
It has 4 fields used for tracking the user and the session key with which a model instance was created/modified:

from audit_log.models import AuthStampedModel

class WarehouseEntry(AuthStampedModel):
 product = models.ForeignKey(Product)
 quantity = models.DecimalField(max_digits = 10, decimal_places = 2)

This will add 4 fields to the WarehouseEntry model:

	created_by - A foreign key to the user that created the model instance.

	created_with_session_key - Stores the session key with which the model instance was first created.

	modified_by - A foreign key to the user that last saved a model instance.

	modified_with_session_key - Stores the session key with which the model instance was last saved.

The related names for the created_by and modified_by fields are created_%(class)s_set and modified_%(class)s_set respectively:

In [3]: admin = User.objects.get(username = 'admin')
In [4]: admin.created_warehouseentry_set.all()
Out[4]: [<WarehouseEntry: WarehouseEntry object>, <WarehouseEntry: WarehouseEntry object>]
In [5]: vasil = User.objects.get(username = 'vasil')
In [6]: vasil.modified_warehouseentry_set.all()
Out[6]: [<WarehouseEntry: WarehouseEntry object>]

This was done to keep in line with Django’s naming for the related_name. If you want to change that or other things you can
create your own abstract base class with the proviced fields.

This is very useful when used in conjuction with TimeStampedModel from django-extensions:

from django_extensions.db.models import TimeStampedModel
from audit_log.models import AuthStampedModel

class Invoice(TimeStampedModel, AuthStampedModel):
 group = models.ForeignKey(InvoiceGroup, verbose_name = _("group"))
 client = models.ForeignKey(ClientContact, verbose_name = _("client"))
 currency = models.ForeignKey(Currency, verbose_name = _("currency"))
 invoice_number = models.CharField(_("invoice number"), blank = False, max_length = 15)
 date_issued = models.DateField(_("date issued"))
 date_due = models.DateField(verbose_name = _("date due"))
 comment = models.TextField(_("comment"), blank = True)
 is_paid = models.BooleanField(_("is paid"), default = False)
 date_paid = models.DateField(_("date paid"), blank = True, null = True)

Tracking Who Created a Model

You can track user information when model instances get created with the CreatingUserField and CreatingSessionKeyField. For example:

from audit_log.models.fields import CreatingUserField, CreatingSessionKeyField

class ProductCategory(models.Model):
 created_by = CreatingUserField(related_name = "created_categories")
 created_with_session_key = CreatingSessionKeyField()
 name = models.CharField(max_length=15)

This is useful for tracking owners of model objects within your app.

Tracking Who Made the Last Changes to a Model

LastUserField and LastSessionKeyField will store the user and session key with which a model instance was last saved:

from django.db import models
from audit_log.models.fields import LastUserField, LastSessionKeyField

class Product(models.Model):
 name = models.CharField(max_length = 150)
 description = models.TextField()
 price = models.DecimalField(max_digits = 10, decimal_places = 2)
 category = models.ForeignKey(ProductCategory)

 def __unicode__(self):
 return self.name

class ProductRating(models.Model):
 user = LastUserField()
 session = LastSessionKeyField()
 product = models.ForeignKey(Product)
 rating = models.PositiveIntegerField()

Anytime someone makes changes to the ProductRating model through the web interface
the reference to the user that made the change will be stored in the user field and
the session key will be stored in the session field.

Tracking full model history

In order to enable historic tracking on a model, the model needs to have a
property of type audit_log.models.managers.AuditLog attached:

from django.db import models
from audit_log.models.fields import LastUserField
from audit_log.models.managers import AuditLog

class ProductCategory(models.Model):
 name = models.CharField(max_length=150, primary_key = True)
 description = models.TextField()

 audit_log = AuditLog()

class Product(models.Model):
 name = models.CharField(max_length = 150)
 description = models.TextField()
 price = models.DecimalField(max_digits = 10, decimal_places = 2)
 category = models.ForeignKey(ProductCategory)

 audit_log = AuditLog()

Each time you add an instance of AuditLog to any of your models you need to run
python manage.py syncdb so that the database table that keeps the actual
audit log for the given model gets created.

Querying the audit log

An instance of audit_log.models.managers.AuditLog will behave much like a
standard manager in your model. Assuming the above model
configuration you can go ahead and create/edit/delete instances of Product,
to query all the changes that were made to the products table
you would need to retrieve all the entries for the audit log for that
particular model class:

In [2]: Product.audit_log.all()
Out[2]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,
 <ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
 <ProductAuditLogEntry: Product: My Gadget super changed at 2011-02-25 06:04:15.448934>,
 <ProductAuditLogEntry: Product: My Gadget changed at 2011-02-25 06:04:06.566589>,
 <ProductAuditLogEntry: Product: My Gadget created at 2011-02-25 06:03:57.751222>,
 <ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Accordingly you can get the changes made to a particular model instance like so:

In [4]: Product.objects.all()[0].audit_log.all()
Out[4]: [<ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:29.292363>,
 <ProductAuditLogEntry: Product: My widget changed at 2011-02-25 06:04:24.898991>,
 <ProductAuditLogEntry: Product: My widget created at 2011-02-25 06:03:42.027220>]

Instances of AuditLog behave like django model managers and can be queried in the same fashion.

The querysets yielded by AuditLog managers are querysets for models
of type [X]AuditLogEntry, where X is the tracked model class.
An instance of XAuditLogEntry represents a log entry for a particular model
instance and will have the following fields that are of relevance:

	action_id - Primary key for the log entry.

	action_date - The point in time when the logged action was performed.

	action_user - The user that performed the logged action.

	action_type - The type of the action (Created/Changed/Deleted)

	Any field of the original X model that is tracked by the audit log.

M2M Relations

Tracking changes on M2M Relations doesn’t work for now. If you really need to track changes on M2M relations with
this package, explicitly define the table with another model instead of declaring the M2M relation.

Abstract Base Models

For now just attaching the AuditLog manager to an abstract base model won’t make it automagically attach itself on the child
models. Just attach it to every child separately.

Disabling/Enabling Tracking on a Model Instance

There may be times when you want a certain save() or delete() on a model instance to be ignored by the audit log.
To disable tracking on a model instance you simply call:

modelinstance.audit_log.disable_tracking()

To re-enable it do:

modelinstance.audit_log.enable_tracking()

Note that this only works on instances, trying to do that on a model class will raise an exception.

Index

 nav.xhtml

 Table of Contents

 		Welcome to django-audit-log's documentation!

 		Installation

 		Tracking Users that Created/Modified a Model

 		Tracking Who Created a Model

 		Tracking Who Made the Last Changes to a Model

 		Tracking full model history

 		Querying the audit log

 		M2M Relations

 		Abstract Base Models

 		Disabling/Enabling Tracking on a Model Instance

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

